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Abstract. The problem of optimizing some contiuous function over the efficient set of a multiple

objective programming problem can be formulated as a nonconvex global optimization problem
with special structure. Based on the conical branch and bound algorithm in global optimization, we
establish an algorithm for optimizing over efficient sets and discuss about the implementation of this
algorithm for some interesting special cases including the case of biobjective programming problems.
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1. Introduction

In general, the multiple objective programming problem can be formulated as
follows:

maxc;(x) i =1,---,k), st.x € X, (MOP)
whereX is a closed subset &" andc;(x) (i =1, --- , k) are continuous functions
defined onX.
Let ¢(x) be the vector function having component$x) (i = 1,--- ,k). A

pointx € X is called arefficient(or nondominatedr Pareto-optimal) solutiorof
Problem (MOP), if there is no point € X such that(y) > c(x) andc(y) # c(x).

The concept of efficient solutions plays a central role in multiple objective op-
timization, see, e.g., [23, 27]. One of the important and interesting approaches in
multiple objective optimization is the problem of optimizing some function over
the set of efficient solutions. More precisely, denotingHyythe set of all efficient
solutions of Problem (MOP), and lettingbe a real-valued function defined &n
we consider the optimization Problem

min {f(x) : x € Ex}, (P)

Optimizing over the efficient set is a very hard task. The main difficulty is that the
efficient set, in general, is nonconvex, even in the case where the funetians
(i=1,---,k)arelinear an is a polyhefral set. The problem of optimizing over
efficient sets has been first considered by Philip in [20]. Subsequently, because of
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its interesting mathematical aspects as well as its wide range of applications, this
problem has attracted the attention of several authors, (cf. e.g., [1-10, 13, 14, 18,
19, 22, 25] and references given therein).

The purpose of this paper is to handle Problem (P) using numerical techniques
in global optimization. One of the most promising approaches in global optimiza-
tion is the branch and bound scheme. A realization of this general scheme called
conical algorithm has been developed for solving concave minimizing problems
and some related nonconvex problems (cf. [11, 12, 15-17, 26]). In [12], the conical
algorithm has been implemented within a decomposition scheme for solving global
optimization problems having some special structure. Based on this decomposi-
tion idea, we propose in the present paper a conical algorithm for Problem (P),
which can be implemented for many interesting cases, in particular for the case of
biobjective optimization problems, i.e., the case where in Problem (MOP) one has
k= 2.

In the next section, we formulate Problem (P) as a global optimization problem
with special structure, for which a conical algorithm is established in Section 3.
Section 4 contains a very simple implementation of the conical algorithm for the
case of biobjective optimization problems. Some preliminary computational results
are reported in the last section.

2. Formulation as a global optimization problem with special structure

A weak form of efficient solutions is the conceptwéakly—efficient solutions. A
pointx € X is called aweakly—efficient solutioof Problem (MOP), if there is no
pointy € X such that(y) > c(x).

In order to construct a global optimization problem with special structure, we
denote byWy the set of all weakly—efficient solutions of Problem (MOP) and
consider the following programming problem.

min { f(x) : x € Wy}. P)

Problem (P is a relaxed form of Problem (P) and was considered e.g. in [2]. In
[14], a conial algorithm has been presented for the case whergei =1, ... ,k,
are linear,X is a polyhedral set angf(x) is a convex function. The algorithm
given in [14] is in fact a special implementation of the general algorithm to be
established in the present article. Some of following results can be found in [14].
For the completeness of presentation, however, they are sometimes recalled.
From Problem (MOP), we define a setl¥, the space of objective functions
which is sometimes called the outcome space,

Z={zeR:z;=c;(x) i=1,---,k), x € X}. (1)
Further, for each € R, define two subsets(z) andL*(z) of R* by
Lz ={veR:z—v<0, veZ) (2)
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LT)={veR:z—v <0, ve Z). (3)

The relationship between efficient (weakly—efficient) solutions of Problem (MOP)
and the sets defined in (2)—(3) can be formulated as follows.

PROPOSITION 1.If x* is an efficient (weakly—efficient) solution of Problem (MOP)
and z* = c(x*), then|L(z*)| = 1, i.e.,, L(z*) = {z*}, (LT (%] = O, i.e.,
L*(z*) = ¥). Conversely, it* € Z satisfies|L(z*)| = 1 (|/L*(z*)| = 0), then
each pointx* € X satisfyingz* = c(x*) is an efficient (weakly—efficient) solution
of Problem (MOP).

Proof. Actually, this proposition contains equivalent definitions of efficient and
weakly—efficient solutions. We show here the equivalency concerning efficient solu-
tions. For weakly—efficient solutions, the proof is straightforward.

Let x* € X be an efficient solution, and let € R* defined byz* = c(x*).
Then, by definition, for each € X, c(x) > c(x*) impliesc(x) = c¢(x*), i.e., the
system

cx)—v=0v=>cx"), xeX 4)

has an unique solutiofx*, v*) with v* = c¢(x*) = z*, i.e.,|L(z*)| = 1.

Next, letz* € R* such thatL(z*)| = 1 and letx* e X satisfyingz* = c(x*).
Then, it follows that System (4) has an unique solution, i.e., for each X,
v = c(x*) impliesv = c(x) = ¢(x*). Thus, by definitionyx* is an efficient solution
of Problem (MOP). O

For the construction of a global optimization problem with special structure, we
use the following notations.

Ez; ={zeZ:|L()|=1} )
Wz ={ze€Z:|L"(z)| =0} (6)
G = {z e R¥: z < vforsomev € Z). (7)

PROPOSITION 2.(i) If Z # @, theninG # @.
(ll) If E; #@,thenEZ CW;=272nNn09G.

(For a setS, we denote by istand 9 S respectively the interior and the bound-
ary of S).

Proof. (i) We can write

G={zeR':iz=v-d, veZ deR}=2Z-R.

Therefore, it follows thatntG > int(z — R:) # ), whenever there exists a point
z€Z.

(ii) Letz € Ez,i.e.,|L(z)| =1.ThenZN{v:z < v} =0,i.e.,.z € W,.
Suppose there is a point e W, such thatu € intG. Then, from the definition
of G, there is a point € Z such thatu € int(v — RY), i.e.,u < v, which is
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a contradiction tar € W,. Thus, we havéV, € Z N aG. On the other hand, let
z € ZNAG. Suppose there is a pointe Z such that < v. Thenz € int(v—R%),
i.e.,z € intG, which is a contradiction tg € 9G. Thus,ZN{v: z < v} =4, i.e.,
z € W5. Thisimplies thatZz N G <€ W; and henceW, = Z N aG. O

In view of Proposition 2, we consider the optimization problem
min{f(x) :x € X, z=c(x) € ZNJG}, Q)
which is equivalent to Problems (P),'Jih the following sense.

PROPOSITION 3. If x* is an optimal solution of P’), then (x*, z*) with z* =
¢(x*) is an optimal solution of (Q). Conversely, (if*, z*) is an optimal solution
of (Q), thenx* is an optimal solution of P’). If, in addition, z* € E,, thenx* is
optimal to(P) as well.

Proof. From Propositions 1 and 2, it follows that Problen) (B equivalent to
the problem

min{f(x) :c(x) —z=0, x € X, |[L*T(z)| =0} =
min{f(x) :x € X, z€ ZNJG}

in the sense stated above. If, in additiah,e E,, where(x*, z*) is an optimal
solution of Problem (Q), then, sinde, C Wy, it follows thatx* is also an optimal
solution of (P). O

In general, Problem (Q) is a highly nonlinear optimization problem, even for
the case thaff is linear andX, Z are polyhedral sets. However, employing the
special structure of the constraine Z N dG, we can establish in the next section
a conical algorithm for handling Problem (Q) and discuss some interesting imple-
mentable cases. Of course, our first aim is to obtain an optimal solution of Problem
(P). Therefore, although Problem (Q) is under consideration, our algorithm will be
designed in a way towards the first aim. Convergence properties of the algorithm
are discussed in detail in Propotions 6 and 7. Preliminary computational experi-
ments show, however, that for the linear case wheérs a polyhedron, and the
functionsc; (x), f(x) are all linear, the algorithm always yields an optimal solution
of Problem (P).

3. Conical algorithm

To our purpose, we assume in what follows that the¥égtdefined in (6) is com-
pact, so that Problem (Q) has an optimal solution whenever the fungiionis
continuous. The seZ defined in (1) is called to b&% —convexif the setG =

Z — RX is convex. For the establishment of our algorithm we also assume that
the setZ is R’i—convex. A sufficient condition for this assumption is, e.g., the
following.
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PROPOSITION 4. If in Problem (MOP),X is a convex subset &” and the
functionsc; (x) (i = 1,...,k) are concave orX, then the setZ defined by (1)
is RX —convex.

Proof. By definition, we have

G=Z-R ={zeR':z<u,u=c@x),x €X)
={zeR" :z—c(x) <0,x € X}.
Thus, the seG is nothing but the projection of the set
{(x,2) e R" xR¥: z —¢(x) <0,x € X}
onR*. From the assumtion, this is a convex subs&’bk R, therefore, it follows

(cf. e.g., [21]) that its projectioli is a convex subset @*. O

As mentioned in the introduction, the conical algorithm belongs to the branch
and bound scheme, in which two basic operations are needed: branching and bound-
ing. We begin the establishment of the conical algorithm with these basic opera-
tions.

3.1. CONICAL PARTITION IN RF

Let 10 be a point inR* such that® € intG and the seK® = {z € R : 10 < 7}
contains the se;. Such a point® can be found, e.g., when min{x) : x € X}

exists for eachi = 1, ... , k. In this case we can choos < intG satisfying

v <min{e;(x):x e X} (i =1,...,k). (8)
Let

o=+ (G=1,...,k), (9)
wheree! (i =1, ..., k) are the unit vectors d&* and let

SO=[ol, ..., 0" (10)
be the(k — 1)—simplex with vertices?, ... , . Then we obtain the convex poly-

hedral conek® = K (S°) of dimensionk, which hask edges emanating fron?,
passing through the vertices of the simpBx Throughout this article, by a ‘cone’
or ‘conical partition set’ we always mean a convex polyhedral cone of dimeksion
havingk edges emanating fron?, passing through vertices of ak — 1)—simplex
S c 89, respectively.

Let K be a cone contained iK°. A collection{K4, ... , K,} of cones is called
aconical partitionof K if

| Jkj =k and int K;nint K;=9 for j#i.
j=1
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EachkK; is called a conical partition set &f.

In the context of our conical algorithm, at the beginning, a céffeis con-
structed as above. Thereafter, at each iteration, a cone is divided into finitely many
subcones using certain standard partition rules. For more details on various conical
partition rules we refer, e.g., to [11, 15-17] and [26]. For convergence proofs of
conical algorithms, the most useful characterization of a conical partition pro-
cess is the concept @xhaustivenessA nested subsequend&,}, K, O K,41

oo
Vg, is called exhaustive if the intersectign) K, is a ray (a halfline emanating

g=1
from the pointv®). A conical partition process is called exhaustive if every nested
subsequence of cones generated throughout the algorithm is exhaustive. A typical
example for exhaustive partition processes is the well-knoamical bisection
see, e.g., [26].

3.2. POLYHEDRAL PARTITION IN R"**

According to the conical partition ifR* discussed above, we obtain a kind of
polyhedral partitions ifR"** which we callK -partition. A collection{Fy, - - - , F,}
of subsets oRR"** is called aK-partition of R"+* if

Fi=R'xK;(j=1....r), (11)

and{K1, ..., K,} forms a conical partition dk*. The setg; are calledK-partition

sets. AK-partition of an element of & -partition is defined similarly by using

a conical partition of the corresponding cone K, i.e., we say that the collection
{F1, ..., F,} forms aK-partition of F = R" x K, whereK is a cone, ifF; =

R"x Kj,(j=1,...,r)and{Ky, ..., K,} forms a conical partition ok .

3.3. LOWER BOUNDS

In this subsection we consider the following task. lket= K (S) be a cone con-
tained inK° = K (5% and letF = R” x K. We intend to compute a lower bound of
the functionf (x) over a part of the feasible set of Problem (Q), which is contained
in F. More precisely, we intend to compute a lower bound) of the optimal
value of the problem

min{ f(x) : x € X, z =c(x) € ZN G, (x,z) € F}. (12)

LetS = [s%,...,s"]land foreachi =1, ... , k, letv’ denote the intersection point
of theith edge ofK with the setdG. Note that theth edge ofK emanates from
v passings’, and that® e intG. Further, letV be the(k x k) matrix with the
columns(vt —v9), ..., (v¥ —v%). Our method for computing a lower boupdK)

is based on the following result.
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PROPOSITION 5. A lower boundu (K) of the optimal value of Problem (12) is
obtained by solving the following program (in variables= R" and 1 € R¥):

w(K) = min f(x)
st c(x)=Vr=2°

xeX (13)
k

> xi=1 A=0.

i=1

(As usual, we sgi(K) = +oo if Problem (13) is infeasible).
Proof. Each point; € K is uniquely represented by

z="+ VA, A >0.

Let

k
Et=JzeR':z=1"+Va Y n>1
i=1
be one of the two halfspaces generated by the hyperplane containikhdjribarly

independent points?, ... , v*. Then, from the convexity of the sét it follows
that the set

{(x,2) e R"xRF:x e X, z=c(x), z€ ZNIG, (x,2) € F}
is contained in the set
{(x,2) eR"xRF:x e X, z=c(x), z€ E*, (x,z) € F} =

k
{(t,2) eR" xRF:x e X, W94+ Va=c(x), YA =1 A >0}
i=1

Therefore, we have

k
w(K)y=min{f(x) :x € X, 04 Vi = c(x), Zx,- >1, 1 >0
i=1
<min{f(x):x e X, z=c¢x), z€ ZNIG, (x,z) € F}. O

In the following remark, we show a simple way to determine intersection pgints

(i=1,...,k) and discuss some interesting special cases for computing the lower
boundu (K).

REMARK 1. (i) Foreach =1,... ,k, the intersection point’ of theith edge
of K with the seth G is computed by

vl =00 (s — 00, (14)
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where, by the definition of7, the numbetry; is computed by

o; = maxa : (V04 a(s’ —v°%) € G}
= maXqa: (W +als’ —1%)) <v, v=cx), x X, a >0} (15)
= maX{a: —cx) + ' — Do < 1% x e X, a >0}

(ii) For the case thaf (x) is a linear function and (MOP) is a linear multiple
objective programming problem, i.e;(x) (i = 1, ... , k) are linear functions and
X is a polyhedral set, Problems (13) and (15) are ordinary linear programs.

(iii) If f(x) is a convex function and (MOP) is a convex multiple objective
programming problem, i.e¢;(x) (i = 1,...,k) are linear functions and is a
convex set defined by

X={xeR:gix)<0(=1...,m)},

with g; (j = 1,...,m) being convex functions, then Problems (13) and (15)
are ordinary convex programming problems. It is worth noting that each (MOP)
with concave functions;(x) (i =1, ... , k) and convex seX can be transformed
into an equivalent convex multiple objective programming problem considered in
this case. For computing a lower boupdK), the convex functionsf(x) and

gi(x) (j =1,...,m) can be iteratively approximated by convex piecewise linear
functions, so that (13) can be formulated equivalently as linear programs (see, e.g.,
[14]).

(fv) If f(x) is a concave function and (MOP) is a convex multiple objective
programming problem in the sense éfi{, then (13) is a concave minimization
problem with a special structure which can be solved by several decomposition
techniques in global optimization (cf., e.g., [11, 17, 24]).

(v) If f is a composite function given by

f&x) =plc1(x), ... ,ax) =@z, ..., 2)

whereg(z) is a concave (or more generally, quasiconcave) function defined on
a suitable subset d&* and (MOP) is a convex multiple objective programming
problem (in the sense ofif)), then, similarly to the case), (13) can be solved
e.g. by the decomposition techniques discussed in [11, 17, 24, 25].

REMARK 2. If K and K’ are conical partition sets satisfying > K’, then the
lower bounds given in Proposition 5 have the useful monotonicity property that

p(K) < p(K").

3.4. UPPERBOUNDS

A point (x, z) is feasible to Problem (Q), f(x) = z andz € W; = Z N 3G.
We call a point(x, z) efficiently-feasible solutionf Problem (Q), ifc(x) = z and
ze Eyz.
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At the begining of the algorithm, if an efficient solutiafl € Ex is available,
then (x%, ¢(x%)) is an efficiently-feasible solution of Problem (Q). In this case we
define a setDy = {(x°, %} with z° = ¢(x%). Notice that several methods for
computing efficient solutions of Problem (MOP) can be found, e.g., in [23, 27]. A
first upper bound forf over the set of efficiently-feasible solutions of Problem (Q)
is then given bygy = £ (x9). If we want to save computing an efficient solution of
(MOP), then we simply sa@o = ¢ and By = +o0.

Throughout the algorithm, more and more efficiently-feasible solutions of Prob-
lem (Q) can be detected and thereby upper bounds can be iteratively improved.

For each conical partion sét, following points can be checked to enlarge the
collection of efficiently-feasible solutions of Problem (Q).

First, for eachi = 1,...,k, let (x', «;) be an optimal solution of Problem
(15) and let;’ = c(x'). Then from Proposition 1 and pait) of Proposition 2, it
follows that the pointx’, ') is a feasible solution and the efficiently-feasibility of
this point should be checked.

Next, let(x(K), A(K)) be an optimal solution of Problem (13) (whenever this
problem is solvable). Then the point

(x(K), 2(K)) = (x(K), VA(K) +1°) = (x(K), c(x(K))) (16)

should be taken for checking efficiently-feasibility.

For a given pointx, z), the examination of efficiently-feasibility is performed
by Proposition 1, namelyx, 7) is an efficiently-feasible solution if and only if
IL@)| =1,i.e., the system

cx)—v=20v>=2ckx), xeX an

has an unique solutiofx, 7). This is the case if

k

k
max Zvi ce(x)—v=20 v=cX), xeX!t = Zci(f).
i=1 i=1

For each conical partion sé&f, we denote byQ(K) the set of all efficiently-
feasible solutions found as above. The number

min{f(x) : (x,z) € Q(K)}
yields an upper bound for the optimal value of Problem (Q).

3.5. THE ALGORITHM

Using notations and basic operations discussed in the previous subsections, we can
formulate the conical branch and bound algorithm for handling Problem (Q) as
follows.

Conical Algorithm:
Initialization:
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Construct a con&® = K (S°) (Subsection 3.1); Compute lower boundk ©)
(Subsections 3.2-3.3); Construgs, Q(K°) (Subsection 3.4); S&dq < QU
Q(K%; If Q¢ # @, then compute upper bourid = min{ f(x) : (x,z) € Qo}
and choosg£?, ¢%) e Qg such thatf (%) = Bo. If Q¢ = ¥, then sefy = +00;
Store(x(K°), z(K°) ((x(K°), z(K°) is determined in (16) according #°);
SetKo = {K°}, uo = n(K°,q =0.

Iterationg:
If B, = gy < 400, then stopi(&9, ¢4) is an optimal solution of Problem (Q)
andé&? is an optimal solution of problem (P) (Proposition 6 below). Otherwise,
perform a conical partition ok ¢ obtainingk?, - -- , K/;
Fori=1,...,rdo
Computen(K); Set Q, < Q, U Q(K/).
end for
SetQ,41 = Q4 If Q441 # ¥, then compute

Bo+1= min{ f(x) : (x, z) € Qg+1}

and choose&7*t, ¢9*1) € Q.1 such thatf(£9+1) = B,.1, otherwise, set
ﬂq_;,_l = +OO, Set

Kyi1= K, \AKYULKT - (K] < Byyr, i =1, 1}

If K,11 # 9, then setu, 1 = min{u(K) : K € X,41} and choosek ¢+! ¢
Ky+1 such thatu,1 = w(Kt1), otherwise, Seliy+1 = By+1; GO to iteration
qg+1.

Convergence properties of the conical algorithm are discussed in following
results.

PROPOSITION 6. If the algorithm terminates at iteratiog (by criterion g, =
Ky < 400), then the poing? is an optimal solution of Problem (P).

Proof. If the algorithm terminates at iteratien theng, = 1, and we obtain the
point (£7, ¢9) with f(&9) = B, = uy. Sincep, is a lower bound of the optimal
value of Problem (Q), the poirig?, ¢4) is an optimal solution of the problem (Q).
Therefore, it follows from Proposition 3 thaf is an optimal solution of Problem
(P), since(g4, ¢9) is an efficiently—feasible solution, i.&? € E. a

If the algorithm is not finite, it generates an infinite nested subsequeéngeof
cones satisfyingc” > K"** for all v.

For eachy such that the corresponding Problem (13) is solvablgxtetz?) =
(x(K1?), z(K?)), where(x(K?), z(K?)) is determined in (16). The convergence of
the algorithm can be stated as follows.

PROPOSITION 7. Assume that throughout the algorithm, the conical partition
process is exhaustive in the sense that each nested subsedienshrinks to a
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ray (cf. Subsection 3.1). Then every cluster pairit z*) of {(x9, z7)} is an optimal
solution of Problem (Q) and henoe is an optimal solution of Problem (R If,
in addition, (x*, z*) is efficiently-feasible, ther* is also an optimal solution of
Problem (P).

Proof. Let (x*, z*) be a cluster point of(x4, z7)} and let{(x", z")} be a sub-
sequence converging toc*, z*). By passing to a subsequence if necessary, we
obtain the corresponding nested sequeice.

Since{K"} shrinks to a rayK*, it follows that{z*} = K*NdGNZ = K*NW,
(Proposition 2). This implies thak*, z*) is a feasible solution of Problem (Q) and
hence it is an optimal solution, becaugéx*) = VILmOOf(x”) = Vli_)rrg() w(Kv)is a
lower bound for the optimal value of this Problem. The remaining statement of this
proposition follows from the definition of efficiently-feasibility (Subsection 3.4)
and Proposition 3. O

4. The case of biobjective programming problem

If k = 2 in Problem (MOP), then (MOP) is called a biobjective programming
problem. This interesting special case was considered by many authors (cf. e.g., [5,
7,9, 10, 22]). In this section we show that for the case of biobjective programming
problem, the conical algorithm in the previous section can be implemented in a very
simple way. Moreover, it is shown that the convergence of the resulting algorithm
for this case can be obtained without using the assumption on exhaustiveness of
the conical partition process.

4.1. CONICAL PARTITION IN R?

Using the very simple structure of the g8t in R?, one can construct a poinf
such that the first con&® = {z € R? : v° < z} has the property

E; =K°NJG. (18)
Letu € R? be computed by

u;, =maXc;(x):xe X} ((=12). (29)
Then we obtain the following simple assertion.

PROPOSITION 8. If the setZ is Ri—convex, and for each= 1, 2, the program
maxc; (x) : x € X} has an unique optimal solution, thdfy, = W.

Proof. From Proposition 2, we know th#t, € W, = Z N dG. Suppose there
is z* € Wz such thatz* ¢ E;. Then|L(z*)| > 1, i.e., there i9» € Z such that
v > z* andv # z*. Sincez* € 3G, it is not possible that* < v, (because* < v
impliesz* € int(v — Ri) C intG). Thus, there is an indexsuch that: = v;.
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If zf = v, < maXc;(x) : x € X}, then, since* € G, it follows thatv € 9G.
Thus,dG contains a line segment parallel to tfte axis(j # i), which contradicts
the convexity ofG. If z¥ = v; = max{c;(x) : x € X}, then, sincev # z*, there
are two different pointsy® andx? in X such that:* = c(x!) andv = c(x?),
andc; (xY) = ¢;(x?) = maxX{c;(x) : x € X}, which is also a contradiction to the
assumption of the proposition. a

So, if the assumptions of Proposition 8 are fulfilled, then the pdiig obtained
by setting

v? = c1(x?) and vg = co(xh),

wherex' is the unique optimal solution of (19) accordingx) (i = 1, 2). Notice
that in this case, the sé&t; (= W) is exactly the part 0 G connecting two points
(c1(x1), ea(xY)), (c1(x?), c2(x?)). Thus, by constructionE, = {z € R? : % <
2} N3G =K°NaG.

If the setZ is ]Ri—convex and Problem (19) has more than one optimal solution
for an indexi, then forj # i set

v? =maxc;(x) :x € X, ¢i(x) = u;}.

By the same argument as above, we also Haye= K° N 3G.

It is worth noting that, unfortunately, the above constructionbtan not be
applied fork > 3.

Throughout the conical algorithm, & be a conical partition set iR? (cf.

Subsection 3.1) and let th{g x 2) matrix V = (v!, v?) be defined as in Subsection
3.3.

Further, let(x(K), z(K)) = (x(K), VA(K) + v°) be computed by (16).
Consider the following programming problem

k
max exr = > A
i=1
_ _ .0
cx)—Vi=v (20)

xeX

k

YAzl >0,
i=1

wheree = (1, 1) € R2.
Letz(K) be the optimal value of Problem (20)./fK) = 1, then it follows that
the set

k
zeRFiz=c(x)=VA+° x €X, Z,\i>1, A>0
=1
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is contained in the set

k
zeRF:z=VA+° Zkizl, A>0Y,
=1

which defines a supporting hyperplane @f This implies that for each feasible
solution (x, 1) of Problem (20), (i.e., of Problem (13)), the point= Vi + v is
contained in the sek N 3G, which is a subset of ; = K° N dG. Thus, the point
(x(K), z(K)) = (x(K), VA(K)+2°) is an efficiently-feasible solution of Problem
(Q), so that it is chosen to update the upper boAndhis implies thatu(K) =
f(x(K)) > B and therefore, the cong is removed from further consideration.

For the case(K) > 1, let(x(K), A(K)) be an optimal solution of Problem (20)
and let

Z(K) = "+ VA(K). (21)

Then the con& is divided into two subconek’;, K, having respectively corres-
ponding matriced; = (Z(K), v?), V2 = (v}, Z(K)).
Obviously we have

(x(K),z(K)) e KNaG, (22)

and therefore(x(K),z(K)) is an efficiently-feasible solution and is chosen to
update the upper bound.

4.2. CONVERGENCE OF THE ALGORITHM

By using the conical partition in Subsection 4.1, we obtain for the conical al-
gorithm following convergence properties, which are completely released from the
assumption on exhaustiveness of the conical partition process.

PROPOSITION 9. (i) If the functionscy (x), ¢c2(x) are linear andX is a polyhed-
ral set, then the algorithm always terminates after finitely many iterations yielding
an optimal solution of Problem (P).

(i) In the general case, if the algorithm is not finite and for each ckirielet
x7,79) = (x(K?),z(K?)), where(x(K?),z(K?)) is computed by (22) according
to K?. Then every cluster poinfx,z7) of the infinite sequenc&Xx?,z?)} is an
optimal solution of Problem (Q) andis an optimal solution of Problem (P).

Proof. (i) If the functionscy (x), c2(x) are linear and is a polyhedral set, then
Z={zeR?:z; =c;(x)(i =1,2),x € X} is apolyhedral set as well. Moreover,
the setE; = K°N 8G is a connected path of (finitely many) edgesZobetween
two points(vf, us), (uq, vg>. By construction, each coré? has the corresponding
matrix V¢ = (v7%, v9?), wherev?!, v72 are break points of the patti,. The point
Z(K7) computed by (21) according t&i? is also a break point of, which is
used for the partition oK. Sincer(K?) > 1, it follows thatz(K9) # v? (i =
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1, 2). Thus, we hav&(K?) # z(K/) for j < ¢, which implies that the algorithm
terminates after finitely many iterations yielding an optimal solution of (Q), since
the number of break points & is finite. From (18), it follows that each optimal
solution of (Q) yields an optimal solution of (P).

(ii) Let (x, 7) be a cluster point of(x?, z%)} and let{(x", ")} be a subsequence
converging to(x, z) such that for each, the corresponding cong" is generated
from K"~ by a conical partition.

Since for each, the pointz” is one of two columns of matri¥ *** andz” — Z,
it follows thatz (KV) — 1, (recall thatr(K") is the optimal value of Problem (20)
according tak"). This implies tha8, — u, = 8, — u(K") < f(x") — u, — Ofor
v — +00, i.e., (x, 7) is an optimal solution of Problem (Q) and therefore, in view
of (18),x is an optimal solution of Problem (P). a

5. Preliminary computational experiments

To test the conical algorithm, we consider a linear multiple objective programming
problem of the form

maxc;(x) =cx=z, (i=1,...,k), StAx<b, x>0,

wherec e R" (i = 1,...,k), Ais arealm x n matrix andb € R™. We assume
that the feasible sdiv € R" : Ax < b, x > 0} is bounded. The functiorf (x) is

also assumed to be linear, i.¢.(x) = fx wheref € R". Denote byC the matrix
with the rowsc’ (i = 1,... , k).

For the test, we modify the conical algorithm as follows. The algorithm termin-
ates at iterationy if g, — nu, < elp,| for g, #0and g — u, < e for g, =0,
wheree > 0is a given tolerance. The poi@?, ¢?) is called are—optimal solution
of Problem (Q) and? is ane—optimal solutionof Problem (P).

For each triple(m,n, k) (6 < m < 90,20 < n < 200 and 2< k < 9
the algorithm was run on 20 randomly generated test problems. Each test problem
is generated in the following way. The matricEs A and the vector$, f are
generated by using a pseudo-random number generator. We notice that for solving
linear subproblems and systems of linear inequalities we used an own code based
on the well known simplex method. Test problems were run on a Sun SPARC
station 10 Modell 20 workstation. Numerical results are summarized in Table 1.

Finally, it is worth noting that in all cases considered within the test, the conical
algorithm terminates after finitely many iterations yielding a2@ptimal solution
of Problem (P).
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Table 1. Computational Results

m n k ITER CMAX TIME

20 50 2 24 5 0.08
50 100 2 37 7 2.92
70 100 2 23 3 3.70
90 100 2 34 6 5.83
20 200 2 38 6 9.67
50 200 2 50 9 10.30
15 20 3 383 77 5.12
20 20 3 341 65 6.42
22 20 3 82 13 1.43
50 50 3 339 67 7.12
50 60 3 426 73 11.66
50 120 3 277 40 23.23
10 30 4 1457 219 24.32
20 30 4 7481 3130 31.41
20 50 4 5246 844 22.89
20 80 4 O 12 6.33
20 100 4 8 6 511
30 100 4 442 64 11.20

ITER: Average number of iterations.

CMAX: Maximal number of cones stored at an
iteration.

TIME: Average CPU-Time in seconds.
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