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Abstract. The problem of optimizing some contiuous function over the efficient set of a multiple
objective programming problem can be formulated as a nonconvex global optimization problem
with special structure. Based on the conical branch and bound algorithm in global optimization, we
establish an algorithm for optimizing over efficient sets and discuss about the implementation of this
algorithm for some interesting special cases including the case of biobjective programming problems.
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1. Introduction

In general, the multiple objective programming problem can be formulated as
follows:

max ci(x) (i = 1, · · · , k), s.t.x ∈ X, (MOP)

whereX is a closed subset ofRn andci(x) (i = 1, · · · , k) are continuous functions
defined onX.

Let c(x) be the vector function having componentsci(x) (i = 1, · · · , k). A
point x ∈ X is called anefficient(or nondominatedor Pareto-optimal) solutionof
Problem (MOP), if there is no pointy ∈ X such thatc(y) > c(x) andc(y) 6= c(x).

The concept of efficient solutions plays a central role in multiple objective op-
timization, see, e.g., [23, 27]. One of the important and interesting approaches in
multiple objective optimization is the problem of optimizing some function over
the set of efficient solutions. More precisely, denoting byEX the set of all efficient
solutions of Problem (MOP), and lettingf be a real-valued function defined onX,
we consider the optimization Problem

min {f (x) : x ∈ EX}, (P)

Optimizing over the efficient set is a very hard task. The main difficulty is that the
efficient set, in general, is nonconvex, even in the case where the functionsci(x)

(i = 1, · · · , k) are linear andX is a polyhefral set. The problem of optimizing over
efficient sets has been first considered by Philip in [20]. Subsequently, because of
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its interesting mathematical aspects as well as its wide range of applications, this
problem has attracted the attention of several authors, (cf. e.g., [1–10, 13, 14, 18,
19, 22, 25] and references given therein).

The purpose of this paper is to handle Problem (P) using numerical techniques
in global optimization. One of the most promising approaches in global optimiza-
tion is the branch and bound scheme. A realization of this general scheme called
conical algorithm has been developed for solving concave minimizing problems
and some related nonconvex problems (cf. [11, 12, 15–17, 26]). In [12], the conical
algorithm has been implemented within a decomposition scheme for solving global
optimization problems having some special structure. Based on this decomposi-
tion idea, we propose in the present paper a conical algorithm for Problem (P),
which can be implemented for many interesting cases, in particular for the case of
biobjective optimization problems, i.e., the case where in Problem (MOP) one has
k = 2.

In the next section, we formulate Problem (P) as a global optimization problem
with special structure, for which a conical algorithm is established in Section 3.
Section 4 contains a very simple implementation of the conical algorithm for the
case of biobjective optimization problems. Some preliminary computational results
are reported in the last section.

2. Formulation as a global optimization problem with special structure

A weak form of efficient solutions is the concept ofweakly–efficient solutions. A
point x ∈ X is called aweakly–efficient solutionof Problem (MOP), if there is no
pointy ∈ X such thatc(y) > c(x).

In order to construct a global optimization problem with special structure, we
denote byWX the set of all weakly–efficient solutions of Problem (MOP) and
consider the following programming problem.

min {f (x) : x ∈ WX}. (P’)

Problem (P′) is a relaxed form of Problem (P) and was considered e.g. in [2]. In
[14], a conial algorithm has been presented for the case whereci(x), i = 1, . . . , k,
are linear,X is a polyhedral set andf (x) is a convex function. The algorithm
given in [14] is in fact a special implementation of the general algorithm to be
established in the present article. Some of following results can be found in [14].
For the completeness of presentation, however, they are sometimes recalled.

From Problem (MOP), we define a set inRk, the space of objective functions
which is sometimes called the outcome space,

Z = {z ∈ Rk : zi = ci(x) (i = 1, · · · , k), x ∈ X}. (1)

Further, for eachz ∈ Rk, define two subsetsL(z) andL+(z) of Rk by

L(z) = {v ∈ Rk : z − v 6 0, v ∈ Z}, (2)
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L+(z) = {v ∈ Rk : z− v < 0, v ∈ Z}. (3)

The relationship between efficient (weakly–efficient) solutions of Problem (MOP)
and the sets defined in (2)–(3) can be formulated as follows.

PROPOSITION 1.If x∗ is an efficient (weakly–efficient) solution of Problem (MOP)
and z∗ = c(x∗), then |L(z∗)| = 1, i.e., L(z∗) = {z∗}, (|L+(z∗)| = 0, i.e.,
L+(z∗) = ∅). Conversely, ifz∗ ∈ Z satisfies|L(z∗)| = 1 (|L+(z∗)| = 0), then
each pointx∗ ∈ X satisfyingz∗ = c(x∗) is an efficient (weakly–efficient) solution
of Problem (MOP).

Proof.Actually, this proposition contains equivalent definitions of efficient and
weakly–efficient solutions. We show here the equivalency concerning efficient solu-
tions. For weakly–efficient solutions, the proof is straightforward.

Let x∗ ∈ X be an efficient solution, and letz∗ ∈ Rk defined byz∗ = c(x∗).
Then, by definition, for eachx ∈ X, c(x) > c(x∗) implies c(x) = c(x∗), i.e., the
system

c(x) − v = 0, v > c(x∗), x ∈ X (4)

has an unique solution(x∗, v∗) with v∗ = c(x∗) = z∗, i.e.,|L(z∗)| = 1.
Next, letz∗ ∈ Rk such that|L(z∗)| = 1 and letx∗ ∈ X satisfyingz∗ = c(x∗).

Then, it follows that System (4) has an unique solution, i.e., for eachx ∈ X,
v > c(x∗) impliesv = c(x) = c(x∗). Thus, by definition,x∗ is an efficient solution
of Problem (MOP). 2

For the construction of a global optimization problem with special structure, we
use the following notations.

EZ = {z ∈ Z : |L(z)| = 1} (5)

WZ = {z ∈ Z : |L+(z)| = 0} (6)

G = {z ∈ Rk : z 6 v for somev ∈ Z}. (7)

PROPOSITION 2. (i) If Z 6= ∅, then intG 6= ∅.
(ii) If EZ 6= ∅, thenEZ ⊆ WZ = Z ∩ ∂G.

(For a setS, we denote by intS and∂S respectively the interior and the bound-
ary ofS).

Proof. (i) We can write

G = {z ∈ Rk : z = v − d, v ∈ Z, d ∈ Rk+} = Z − Rk+.
Therefore, it follows thatintG ⊃ int (z − Rk+) 6= ∅, whenever there exists a point
z ∈ Z.

(ii) Let z ∈ EZ, i.e., |L(z)| = 1. ThenZ ∩ {v : z < v} = ∅, i.e.,z ∈ WZ.
Suppose there is a pointu ∈ WZ such thatu ∈ intG. Then, from the definition
of G, there is a pointv ∈ Z such thatu ∈ int (v − Rk+), i.e., u < v, which is
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a contradiction tou ∈ WZ. Thus, we haveWZ ⊆ Z ∩ ∂G. On the other hand, let
z ∈ Z∩∂G. Suppose there is a pointv ∈ Z such thatz < v. Thenz ∈ int (v−Rk+),
i.e.,z ∈ intG, which is a contradiction toz ∈ ∂G. Thus,Z ∩ {v : z < v} = ∅, i.e.,
z ∈ WZ. This implies thatZ ∩ ∂G ⊆ WZ and hence,WZ = Z ∩ ∂G. 2

In view of Proposition 2, we consider the optimization problem

min{f (x) : x ∈ X, z = c(x) ∈ Z ∩ ∂G}, (Q)

which is equivalent to Problems (P), (P′) in the following sense.

PROPOSITION 3. If x∗ is an optimal solution of(P ′), then(x∗, z∗) with z∗ =
c(x∗) is an optimal solution of (Q). Conversely, if(x∗, z∗) is an optimal solution
of (Q), thenx∗ is an optimal solution of(P ′). If, in addition, z∗ ∈ EZ, thenx∗ is
optimal to(P ) as well.

Proof. From Propositions 1 and 2, it follows that Problem (P′) is equivalent to
the problem

min{f (x) : c(x)− z = 0, x ∈ X, |L+(z)| = 0} =
min{f (x) : x ∈ X, z ∈ Z ∩ ∂G}

in the sense stated above. If, in addition,z∗ ∈ EZ, where(x∗, z∗) is an optimal
solution of Problem (Q), then, sinceEZ ⊆ WZ, it follows thatx∗ is also an optimal
solution of (P). 2

In general, Problem (Q) is a highly nonlinear optimization problem, even for
the case thatf is linear andX, Z are polyhedral sets. However, employing the
special structure of the constraintz ∈ Z ∩ ∂G, we can establish in the next section
a conical algorithm for handling Problem (Q) and discuss some interesting imple-
mentable cases. Of course, our first aim is to obtain an optimal solution of Problem
(P). Therefore, although Problem (Q) is under consideration, our algorithm will be
designed in a way towards the first aim. Convergence properties of the algorithm
are discussed in detail in Propotions 6 and 7. Preliminary computational experi-
ments show, however, that for the linear case whereX is a polyhedron, and the
functionsci(x), f (x) are all linear, the algorithm always yields an optimal solution
of Problem (P).

3. Conical algorithm

To our purpose, we assume in what follows that the setWZ defined in (6) is com-
pact, so that Problem (Q) has an optimal solution whenever the functionf (x) is
continuous. The setZ defined in (1) is called to beRk+–convexif the setG =
Z − Rk+ is convex. For the establishment of our algorithm we also assume that
the setZ is Rk+–convex. A sufficient condition for this assumption is, e.g., the
following.
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PROPOSITION 4. If in Problem (MOP),X is a convex subset ofRn and the
functionsci(x) (i = 1, . . . , k) are concave onX, then the setZ defined by (1)
isRk+–convex.

Proof.By definition, we have

G = Z − Rk+ = {z ∈ Rk : z 6 u, u = c(x), x ∈ X}
= {z ∈ Rk : z − c(x) 6 0, x ∈ X}.

Thus, the setG is nothing but the projection of the set

{(x, z) ∈ Rn × Rk : z − c(x) 6 0, x ∈ X}
onRk. From the assumtion, this is a convex subset ofRn×Rk, therefore, it follows
(cf. e.g., [21]) that its projectionG is a convex subset ofRk. 2

As mentioned in the introduction, the conical algorithm belongs to the branch
and bound scheme, in which two basic operations are needed: branching and bound-
ing. We begin the establishment of the conical algorithm with these basic opera-
tions.

3.1. CONICAL PARTITION IN Rk

Let v0 be a point inRk such thatv0 ∈ intG and the setK0 = {z ∈ Rk : v0 6 z}
contains the setWZ. Such a pointv0 can be found, e.g., when min{ci(x) : x ∈ X}
exists for eachi = 1, . . . , k. In this case we can choosev0 ∈ intG satisfying

v0
i 6 min{ci(x) : x ∈ X} (i = 1, . . . , k). (8)

Let

σ i = v0+ ei (i = 1, . . . , k), (9)

whereei (i = 1, . . . , k) are the unit vectors ofRk and let

S0 = [σ 1, . . . , σ k] (10)

be the(k−1)–simplex with verticesσ 1, . . . , σ k. Then we obtain the convex poly-
hedral coneK0 = K(S0) of dimensionk, which hask edges emanating fromv0,
passing through the vertices of the simplexS0. Throughout this article, by a ‘cone’
or ‘conical partition set’ we always mean a convex polyhedral cone of dimensionk,
havingk edges emanating fromv0, passing throughk vertices of a(k−1)–simplex
S ⊂ S0, respectively.

LetK be a cone contained inK0. A collection{K1, . . . , Kr} of cones is called
aconical partitionof K if

r⋃
j=1

Kj = K and int Kj ∩ int Ki = ∅ for j 6= i.
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EachKj is called a conical partition set ofK.
In the context of our conical algorithm, at the beginning, a coneK0 is con-

structed as above. Thereafter, at each iteration, a cone is divided into finitely many
subcones using certain standard partition rules. For more details on various conical
partition rules we refer, e.g., to [11, 15–17] and [26]. For convergence proofs of
conical algorithms, the most useful characterization of a conical partition pro-
cess is the concept ofexhaustiveness. A nested subsequence{Kq}, Kq ⊃ Kq+1

∀q, is called exhaustive if the intersection
∞⋂
q=1

Kq is a ray (a halfline emanating

from the pointv0). A conical partition process is called exhaustive if every nested
subsequence of cones generated throughout the algorithm is exhaustive. A typical
example for exhaustive partition processes is the well-knownconical bisection,
see, e.g., [26].

3.2. POLYHEDRAL PARTITION IN Rn+k

According to the conical partition inRk discussed above, we obtain a kind of
polyhedral partitions inRn+k which we callK-partition. A collection{F1, · · · , Fr }
of subsets ofRn+k is called aK-partition of Rn+k , if

Fj = Rn ×Kj (j = 1, . . . , r), (11)

and{K1, . . . , Kr} forms a conical partition ofRk. The setsFj are calledK-partition
sets. AK-partition of an element of aK-partition is defined similarly by using
a conical partition of the corresponding cone K, i.e., we say that the collection
{F1, . . . , Fr } forms aK-partition ofF = Rn × K, whereK is a cone, ifFj =
Rn ×Kj , (j = 1, . . . , r) and{K1, . . . , Kr } forms a conical partition ofK.

3.3. LOWER BOUNDS

In this subsection we consider the following task. LetK = K(S) be a cone con-
tained inK0 = K(S0) and letF = Rn×K. We intend to compute a lower bound of
the functionf (x) over a part of the feasible set of Problem (Q), which is contained
in F . More precisely, we intend to compute a lower boundµ(K) of the optimal
value of the problem

min{f (x) : x ∈ X, z = c(x) ∈ Z ∩ ∂G, (x, z) ∈ F }. (12)

LetS = [s1, . . . , sk] and for eachi = 1, . . . , k, letvi denote the intersection point
of the ith edge ofK with the set∂G. Note that theith edge ofK emanates from
v0 passingsi , and thatv0 ∈ intG. Further, letV be the(k × k) matrix with the
columns(v1−v0), . . . , (vk−v0). Our method for computing a lower boundµ(K)
is based on the following result.
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PROPOSITION 5. A lower boundµ(K) of the optimal value of Problem (12) is
obtained by solving the following program (in variablesx ∈ Rn andλ ∈ Rk):

µ(K) = min f (x)
s.t. c(x)− V λ = v0

x ∈ X
k∑
i=1
λi > 1, λ > 0.

(13)

(As usual, we setµ(K) = +∞ if Problem (13) is infeasible).
Proof.Each pointz ∈ K is uniquely represented by

z = v0+ V λ, λ > 0.

Let

E+ =
{
z ∈ Rk : z = v0+ V λ,

k∑
i=1

λi > 1

}

be one of the two halfspaces generated by the hyperplane containing thek linearly
independent pointsv1, . . . , vk. Then, from the convexity of the setG it follows
that the set

{(x, z) ∈ Rn × Rk : x ∈ X, z = c(x), z ∈ Z ∩ ∂G, (x, z) ∈ F }
is contained in the set

{(x, z) ∈ Rn × Rk : x ∈ X, z = c(x), z ∈ E+, (x, z) ∈ F } =
{(x, z) ∈ Rn × Rk : x ∈ X, v0+ V λ = c(x),

k∑
i=1
λi > 1, λ > 0}.

Therefore, we have

µ(K) = min{f (x) : x ∈ X, v0+ Vλ = c(x),
k∑
i=1

λi > 1, λ > 0}

6 min{f (x) : x ∈ X, z = c(x), z ∈ Z ∩ ∂G, (x, z) ∈ F }. 2
In the following remark, we show a simple way to determine intersection pointsvi

(i = 1, . . . , k) and discuss some interesting special cases for computing the lower
boundµ(K).

REMARK 1. (i) For eachi = 1, . . . , k, the intersection pointvi of the ith edge
of K with the set∂G is computed by

vi = v0+ αi(si − v0), (14)



328 NGUYEN V. THOAI

where, by the definition ofG, the numberαi is computed by

αi = max{α : (v0+ α(si − v0)) ∈ G}
= max{α : (v0+ α(si − v0)) 6 v, v = c(x), x ∈ X, α > 0}
= max{α : −c(x)+ (si − v0)α 6 −v0, x ∈ X, α > 0}.

(15)

(ii) For the case thatf (x) is a linear function and (MOP) is a linear multiple
objective programming problem, i.e.,ci(x) (i = 1, . . . , k) are linear functions and
X is a polyhedral set, Problems (13) and (15) are ordinary linear programs.

(iii) If f (x) is a convex function and (MOP) is a convex multiple objective
programming problem, i.e.,ci(x) (i = 1, . . . , k) are linear functions andX is a
convex set defined by

X = {x ∈ R : gj (x) 6 0 (j = 1, . . . , m)},
with gj (j = 1, . . . , m) being convex functions, then Problems (13) and (15)
are ordinary convex programming problems. It is worth noting that each (MOP)
with concave functionsci(x) (i = 1, . . . , k) and convex setX can be transformed
into an equivalent convex multiple objective programming problem considered in
this case. For computing a lower boundµ(K), the convex functionsf (x) and
gj (x) (j = 1, . . . , m) can be iteratively approximated by convex piecewise linear
functions, so that (13) can be formulated equivalently as linear programs (see, e.g.,
[14]).

(iv) If f (x) is a concave function and (MOP) is a convex multiple objective
programming problem in the sense of (iii), then (13) is a concave minimization
problem with a special structure which can be solved by several decomposition
techniques in global optimization (cf., e.g., [11, 17, 24]).

(v) If f is a composite function given by

f (x) = ϕ(c1(x), . . . , ck(x)) = ϕ(z1, . . . , zk)

whereϕ(z) is a concave (or more generally, quasiconcave) function defined on
a suitable subset ofRk and (MOP) is a convex multiple objective programming
problem (in the sense of (iii)), then, similarly to the case (iv), (13) can be solved
e.g. by the decomposition techniques discussed in [11, 17, 24, 25].

REMARK 2. If K andK ′ are conical partition sets satisfyingK ⊃ K ′, then the
lower bounds given in Proposition 5 have the useful monotonicity property that
µ(K) 6 µ(K ′).

3.4. UPPERBOUNDS

A point (x, z) is feasible to Problem (Q), ifc(x) = z andz ∈ WZ = Z ∩ ∂G.
We call a point(x, z) efficiently-feasible solutionof Problem (Q), ifc(x) = z and
z ∈ EZ.
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At the begining of the algorithm, if an efficient solutionx0 ∈ EX is available,
then(x0, c(x0)) is an efficiently-feasible solution of Problem (Q). In this case we
define a setQ0 = {(x0, z0)} with z0 = c(x0). Notice that several methods for
computing efficient solutions of Problem (MOP) can be found, e.g., in [23, 27]. A
first upper bound forf over the set of efficiently-feasible solutions of Problem (Q)
is then given byβ0 = f (x0). If we want to save computing an efficient solution of
(MOP), then we simply setQ0 = ∅ andβ0 = +∞.

Throughout the algorithm, more and more efficiently-feasible solutions of Prob-
lem (Q) can be detected and thereby upper bounds can be iteratively improved.

For each conical partion setK, following points can be checked to enlarge the
collection of efficiently-feasible solutions of Problem (Q).

First, for eachi = 1, . . . , k, let (xi, αi) be an optimal solution of Problem
(15) and letzi = c(xi). Then from Proposition 1 and part (ii) of Proposition 2, it
follows that the point(xi, zi) is a feasible solution and the efficiently-feasibility of
this point should be checked.

Next, let(x(K), λ(K)) be an optimal solution of Problem (13) (whenever this
problem is solvable). Then the point

(x(K), z(K)) = (x(K), V λ(K)+ v0) = (x(K), c(x(K))) (16)

should be taken for checking efficiently-feasibility.
For a given point(x, z), the examination of efficiently-feasibility is performed

by Proposition 1, namely,(x, z) is an efficiently-feasible solution if and only if
|L(z)| = 1, i.e., the system

c(x) − v > 0, v > c(x), x ∈ X (17)

has an unique solution(x, z). This is the case if

max

{
k∑
i=1

vi : c(x)− v > 0, v > c(x), x ∈ X
}
=

k∑
i=1

ci(x).

For each conical partion setK, we denote byQ(K) the set of all efficiently-
feasible solutions found as above. The number

min{f (x) : (x, z) ∈ Q(K)}
yields an upper bound for the optimal value of Problem (Q).

3.5. THE ALGORITHM

Using notations and basic operations discussed in the previous subsections, we can
formulate the conical branch and bound algorithm for handling Problem (Q) as
follows.

Conical Algorithm:
Initialization:
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Construct a coneK0 = K(S0) (Subsection 3.1); Compute lower boundµ(K0)

(Subsections 3.2–3.3); ConstructQ0,Q(K0) (Subsection 3.4); SetQ0← Q0∪
Q(K0); If Q0 6= ∅, then compute upper boundβ0 = min{f (x) : (x, z) ∈ Q0}
and choose(ξ0, ζ 0) ∈ Q0 such thatf (ξ0) = β0. If Q0 = ∅, then setβ0 = +∞;
Store(x(K0), z(K0)) ((x(K0), z(K0) is determined in (16) according toK0);
SetK0 = {K0}, µ0 = µ(K0), q = 0.

Iteration q:
If βq = µq < +∞, then stop:(ξ q, ζ q) is an optimal solution of Problem (Q)
andξq is an optimal solution of problem (P) (Proposition 6 below). Otherwise,
perform a conical partition ofKq obtainingKq

1 , · · · ,Kq
r ;

For i = 1, . . . , r do
Computeµ(Kq

i ); Set Qq ← Qq ∪Q(Kq

i ).
end for
SetQq+1 = Qq ; If Qq+1 6= ∅, then compute

βq+1 = min{f (x) : (x, z) ∈ Qq+1}
and choose(ξ q+1, ζ q+1) ∈ Qq+1 such thatf (ξq+1) = βq+1, otherwise, set
βq+1 = +∞; Set

Kq+1 =Kq \ {Kq} ∪ {Kq

i : µ(Kq

i ) < βq+1, i = 1, · · · , r};
If Kq+1 6= ∅, then setµq+1 = min{µ(K) : K ∈ Kq+1} and chooseKq+1 ∈
Kq+1 such thatµq+1 = µ(Kq+1), otherwise, setµq+1 = βq+1; Go to iteration
q + 1.

Convergence properties of the conical algorithm are discussed in following
results.

PROPOSITION 6. If the algorithm terminates at iterationq (by criterion βq =
µq < +∞), then the pointξq is an optimal solution of Problem (P).

Proof.If the algorithm terminates at iterationq, thenβq = µq and we obtain the
point (ξ q, ζ q) with f (ξq) = βq = µq . Sinceµq is a lower bound of the optimal
value of Problem (Q), the point(ξ q, ζ q) is an optimal solution of the problem (Q).
Therefore, it follows from Proposition 3 thatxq is an optimal solution of Problem
(P), since(ξ q, ζ q) is an efficiently–feasible solution, i.e.,ζ q ∈ EZ. 2

If the algorithm is not finite, it generates an infinite nested subsequence{Kν} of
cones satisfyingKν ⊃ Kν+1 for all ν.

For eachq such that the corresponding Problem (13) is solvable, let(xq, zq) =
(x(Kq), z(Kq)), where(x(Kq), z(Kq)) is determined in (16). The convergence of
the algorithm can be stated as follows.

PROPOSITION 7. Assume that throughout the algorithm, the conical partition
process is exhaustive in the sense that each nested subsequence{Kν} shrinks to a
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ray (cf. Subsection 3.1). Then every cluster point(x∗, z∗) of {(xq, zq)} is an optimal
solution of Problem (Q) and hencex∗ is an optimal solution of Problem (P′). If,
in addition, (x∗, z∗) is efficiently-feasible, thenx∗ is also an optimal solution of
Problem (P).

Proof. Let (x∗, z∗) be a cluster point of{(xq, zq)} and let{(xν, zν)} be a sub-
sequence converging to(x∗, z∗). By passing to a subsequence if necessary, we
obtain the corresponding nested sequence{Kν}.

Since{Kν} shrinks to a ray,K∗, it follows that{z∗} = K∗ ∩∂G∩Z = K∗ ∩WZ

(Proposition 2). This implies that(x∗, z∗) is a feasible solution of Problem (Q) and
hence it is an optimal solution, becausef (x∗) = lim

ν→∞f (x
ν) = lim

ν→∞µ(K
ν) is a

lower bound for the optimal value of this Problem. The remaining statement of this
proposition follows from the definition of efficiently-feasibility (Subsection 3.4)
and Proposition 3. 2

4. The case of biobjective programming problem

If k = 2 in Problem (MOP), then (MOP) is called a biobjective programming
problem. This interesting special case was considered by many authors (cf. e.g., [5,
7, 9, 10, 22]). In this section we show that for the case of biobjective programming
problem, the conical algorithm in the previous section can be implemented in a very
simple way. Moreover, it is shown that the convergence of the resulting algorithm
for this case can be obtained without using the assumption on exhaustiveness of
the conical partition process.

4.1. CONICAL PARTITION IN R2

Using the very simple structure of the setEZ in R2, one can construct a pointv0

such that the first coneK0 = {z ∈ R2 : v0 6 z} has the property

EZ = K0 ∩ ∂G. (18)

Let u ∈ R2 be computed by

ui = max{ci(x) : x ∈ X} (i = 1,2). (19)

Then we obtain the following simple assertion.

PROPOSITION 8. If the setZ isR2+–convex, and for eachi = 1,2, the program
max{ci(x) : x ∈ X} has an unique optimal solution, thenEZ = WZ.

Proof.From Proposition 2, we know thatEZ ⊆ WZ = Z ∩ ∂G. Suppose there
is z∗ ∈ WZ such thatz∗ /∈ EZ. Then|L(z∗)| > 1, i.e., there isv ∈ Z such that
v > z∗ andv 6= z∗. Sincez∗ ∈ ∂G, it is not possible thatz∗ < v, (becausez∗ < v

implies z∗ ∈ int (v − R2+) ⊂ intG). Thus, there is an indexi such thatz∗i = vi .
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If z∗i = vi < max{ci(x) : x ∈ X}, then, sincez∗ ∈ ∂G, it follows thatv ∈ ∂G.
Thus,∂G contains a line segment parallel to thej th axis(j 6= i), which contradicts
the convexity ofG. If z∗i = vi = max{ci(x) : x ∈ X}, then, sincev 6= z∗, there
are two different points,x1 and x2 in X such thatz∗ = c(x1) and v = c(x2),
andci(x1) = ci(x

2) = max{ci(x) : x ∈ X}, which is also a contradiction to the
assumption of the proposition. 2

So, if the assumptions of Proposition 8 are fulfilled, then the pointv0 is obtained
by setting

v0
1 = c1(x

2) and v0
2 = c2(x

1),

wherexi is the unique optimal solution of (19) according toci(x) (i = 1,2). Notice
that in this case, the setEZ (= WZ) is exactly the part of∂G connecting two points
(c1(x

1), c2(x
1)), (c1(x

2), c2(x
2)). Thus, by construction,EZ = {z ∈ R2 : v0 6

z} ∩ ∂G = K0 ∩ ∂G.
If the setZ isR2+–convex and Problem (19) has more than one optimal solution

for an indexi, then forj 6= i set

v0
j = max{cj (x) : x ∈ X, ci(x) = ui}.

By the same argument as above, we also haveEZ = K0 ∩ ∂G.
It is worth noting that, unfortunately, the above construction ofv0 can not be

applied fork > 3.
Throughout the conical algorithm, letK be a conical partition set inR2 (cf.

Subsection 3.1) and let the(2×2) matrixV = (v1, v2) be defined as in Subsection
3.3.

Further, let(x(K), z(K)) = (x(K), V λ(K)+ v0) be computed by (16).
Consider the following programming problem

max eλ =
k∑
i=1
λi

c(x)− V λ = v0

x ∈ X
k∑
i=1
λi > 1, λ > 0,

(20)

wheree = (1,1) ∈ R2.
Let t (K) be the optimal value of Problem (20). Ift (K) = 1, then it follows that

the set{
z ∈ Rk : z = c(x) = V λ+ v0, x ∈ X,

k∑
i=1

λi > 1, λ > 0

}
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is contained in the set{
z ∈ Rk : z = V λ+ v0,

k∑
i=1

λi = 1, λ > 0

}
,

which defines a supporting hyperplane ofG. This implies that for each feasible
solution(x, λ) of Problem (20), (i.e., of Problem (13)), the pointz = V λ + v0 is
contained in the setK ∩ ∂G, which is a subset ofEZ = K0 ∩ ∂G. Thus, the point
(x(K), z(K)) = (x(K), V λ(K)+v0) is an efficiently-feasible solution of Problem
(Q), so that it is chosen to update the upper boundβ. This implies thatµ(K) =
f (x(K)) > β and therefore, the coneK is removed from further consideration.

For the caset (K) > 1, let(x(K), λ(K)) be an optimal solution of Problem (20)
and let

z(K) = v0+ V λ(K). (21)

Then the coneK is divided into two subconesK1, K2 having respectively corres-
ponding matricesV1 = (z(K), v2), V2 = (v1, z(K)).

Obviously we have

(x(K), z(K)) ∈ K ∩ ∂G, (22)

and therefore,(x(K), z(K)) is an efficiently-feasible solution and is chosen to
update the upper bound.

4.2. CONVERGENCE OF THE ALGORITHM

By using the conical partition in Subsection 4.1, we obtain for the conical al-
gorithm following convergence properties, which are completely released from the
assumption on exhaustiveness of the conical partition process.

PROPOSITION 9. (i) If the functionsc1(x), c2(x) are linear andX is a polyhed-
ral set, then the algorithm always terminates after finitely many iterations yielding
an optimal solution of Problem (P).

(ii) In the general case, if the algorithm is not finite and for each coneKq , let
(xq, zq) = (x(Kq), z(Kq)), where(x(Kq), z(Kq)) is computed by (22) according
to Kq . Then every cluster point(x, z) of the infinite sequence{(xq, zq)} is an
optimal solution of Problem (Q) andx is an optimal solution of Problem (P).

Proof. (i) If the functionsc1(x), c2(x) are linear andX is a polyhedral set, then
Z = {z ∈ R2 : zi = ci(x)(i = 1,2), x ∈ X} is a polyhedral set as well. Moreover,
the setEZ = K0 ∩ ∂G is a connected path of (finitely many) edges ofZ between
two points(v0

1, u2), (u1, v
0
2). By construction, each coneKq has the corresponding

matrixV q = (vq1, vq2), wherevq1, vq2 are break points of the pathEZ. The point
z(Kq) computed by (21) according toKq is also a break point ofEZ, which is
used for the partition ofKq . Sincet (Kq) > 1, it follows thatz(Kq) 6= vqi (i =
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1,2). Thus, we havez(Kq) 6= z(Kj ) for j < q, which implies that the algorithm
terminates after finitely many iterations yielding an optimal solution of (Q), since
the number of break points ofEZ is finite. From (18), it follows that each optimal
solution of (Q) yields an optimal solution of (P).

(ii) Let (x, z) be a cluster point of{(xq, zq)} and let{(xν, zν)} be a subsequence
converging to(x, z) such that for eachν, the corresponding coneKν is generated
fromKν−1 by a conical partition.

Since for eachν, the pointzν is one of two columns of matrixV ν+1 andzν → z,
it follows that t (Kν)→ 1, (recall thatt (Kν) is the optimal value of Problem (20)
according toKν ). This implies thatβν−µν = βν−µ(Kν) 6 f (xν)−µν → 0 for
ν → +∞, i.e.,(x, z) is an optimal solution of Problem (Q) and therefore, in view
of (18),x is an optimal solution of Problem (P). 2

5. Preliminary computational experiments

To test the conical algorithm, we consider a linear multiple objective programming
problem of the form

max ci(x) = cix = zi (i = 1, . . . , k), s.t.Ax 6 b, x > 0,

whereci ∈ Rn (i = 1, . . . , k), A is a realm × n matrix andb ∈ Rm. We assume
that the feasible set{x ∈ Rn : Ax 6 b, x > 0} is bounded. The functionf (x) is
also assumed to be linear, i.e.,f (x) = f x wheref ∈ Rn. Denote byC the matrix
with the rowsci (i = 1, . . . , k).

For the test, we modify the conical algorithm as follows. The algorithm termin-
ates at iterationq if βq − µq 6 ε|βq | for βq 6= 0 and βq − µq 6 ε for βq = 0,
whereε > 0 is a given tolerance. The point(ξ q, ζ q) is called anε–optimal solution
of Problem (Q) andξq is anε–optimal solutionof Problem (P).

For each triple(m, n, k) (6 6 m 6 90, 20 6 n 6 200 and 26 k 6 4)
the algorithm was run on 20 randomly generated test problems. Each test problem
is generated in the following way. The matricesC, A and the vectorsb, f are
generated by using a pseudo-random number generator. We notice that for solving
linear subproblems and systems of linear inequalities we used an own code based
on the well known simplex method. Test problems were run on a Sun SPARC
station 10 Modell 20 workstation. Numerical results are summarized in Table 1.

Finally, it is worth noting that in all cases considered within the test, the conical
algorithm terminates after finitely many iterations yielding a 10−2–optimal solution
of Problem (P).
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Table 1. Computational Results

m n k ITER CMAX TIME

20 50 2 24 5 0.08

50 100 2 37 7 2.92

70 100 2 23 3 3.70

90 100 2 34 6 5.83

20 200 2 38 6 9.67

50 200 2 50 9 10.30

15 20 3 383 77 5.12

20 20 3 341 65 6.42

22 20 3 82 13 1.43

50 50 3 339 67 7.12

50 60 3 426 73 11.66

50 120 3 277 40 23.23

10 30 4 1457 219 24.32

20 30 4 7481 3130 31.41

20 50 4 5246 844 22.89

20 80 4 0 12 6.33

20 100 4 8 6 5.11

30 100 4 442 64 11.20

ITER: Average number of iterations.
CMAX: Maximal number of cones stored at an
iteration.
TIME: Average CPU-Time in seconds.
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